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a b s t r a c t

A new direction-of-arrival estimator for coherent signals in spatially correlated noise is
devised in this paper. By constructing a set of fourth-order cumulant based Toeplitz
matrices, the coherent signals can be decorrelated. Moreover, by utilizing the joint
diagonalization structure of these Toeplitz matrices, a new cost function that does not
require any a priori information of the source number is developed. Numerical examples
are provided to demonstrate the effectiveness of the proposed approach.

& 2015 Elsevier B.V. All rights reserved.
1. Introduction

Direction finding using a sensor array is an important
task in many applications, such as radar [1], sonar [2] and
wireless communications [3]. Numerous direction-of-
arrival (DOA) estimators have been proposed in the litera-
ture. Among them, subspace based DOA estimation meth-
ods, such as ESPRIT [4–6] and MUSIC [7–9], provide an
excellent solution to this problem when the following
three assumptions are satisfied:
A1
 The number of sources is known a priori.
ported by the NSFC/
ch Grants Council of
tion of China (Project
he National Natural
nd by the Shenzhen
.

n),
ok.com (Y. Xiao),
A2
 The sources are mutually uncorrelated or partially
correlated.
A3
 The noise is spatially uncorrelated white noise, i.e., the
covariance matrix is proportional to the identity matrix.
If any one of the above assumptions does not hold, this
kind of techniques may suffer serious performance
degradation.

As a matter of fact, the source number is usually
unknown to the receiver in practice. To circumvent this
issue, various source enumeration approaches have been
suggested. Akaike information criterion (AIC) [10,11] and
minimum description length (MDL) [12–15] are the most
popular methods to estimate the number of sources.
However, when the sample size is small and the signal-
to-noise ratio (SNR) is low, they might not provide correct
estimate of the source number. Although numerous mod-
ified algorithms have been proposed, the correct detection
probability is still low in extreme conditions, especially
when the noise property is unknown [13].

The A2 cannot be satisfied in practice due to multipath
propagation, which leads to many coherent components
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Fig. 1. Symmetric ULA model.

C. Qian et al. / Signal Processing 111 (2015) 170–178 171
among the received data. Under such a case, the source
covariance matrix is rank deficient, which in turn makes
subspace based techniques to suffer serious performance
degradation. Spatial smoothing (SS) technique and its
variants [16–18] have been proposed to handle the coher-
ent signals. They use a preprocessing scheme that first
partitions the total array into subarrays and then averages
the subarray output covariance matrices to make the
source covariance matrix to be full rank, enabling the
subspace based algorithms to work properly.

It is well known that most of the DOA estimation tech-
niques are sensitive to the noise model [19,20] because they
implicitly assume spatially uncorrelated noise. The spatially
correlated noise can be easily handled by pre-whitening
[21] provided that its covariance matrix is known a priori.
However, in practice, since the array response and noise
covariance are often computed from limited observations,
an accurate covariance structure is often not available. The
technique suggested in [22] is based on a parametric model
to determine the noise covariance matrix, which allows the
signal and noise parameters to be estimated simulta-
neously. In [23], a maximum likelihood (ML) based DOA
estimation method has been proposed. It uses a set of
sparse sensor arrays with multiple widely separated sub-
arrays to make sensor noise uncorrelated between different
subarrays, and then applies the ML method to estimate
the DOAs.

The conventional array processing techniques are usually
based on the covariance matrix which corresponds to the
second-order statistics of the received signals. Indeed, the
received signals are often non-Gaussian in practice, e.g., the
BPSK, QPSK and QAM modulated signals. For non-Gaussian
signals, the second-order statistics are not sufficient to
characterize their statistical behavior. Higher-order mome-
nts are preferred to explore the non-Gaussianity of the
signals. A number of higher-order statistics based DOA esti-
mators have been proposed in the literature. Zeng et al. [24]
use a set of fourth-order cumulant matrices to devise a new
DOA estimation method that does not need to know the
source number. However, it cannot deal with the coherent
signals. Doǧan and Mendel [25] use the higher-order
cumulant to generate virtual aperture and then devise a
virtual-ESPRIT algorithm (VESPA) which utilizes the infor-
mation between virtual and actual sensors to solve the
problem of joint array calibration and DOA estimation. The
VESPAworks properly for uncorrelated signals. For coherent
signals, an extended VESPA (EVESPA) [26] has been pro-
posed. Since each signal eigenvector associated with a group
of coherent signals contains all the DOA information of
these signals, the EVESPA applies the SS technique to this
signal eigenvector to construct a full-rank signal subspace.
Then it utilizes the root-MUSIC method to yield the DOA
estimates. In [27], a higher-order cumulant MUSIC algo-
rithm has been developed. This scheme can correctly work
for the underdetermined case where the number of signals
is larger than the number of sensors, but it is unable to
handle the coherent signals.

To overcome the aforementioned shortcomings of the
existing subspace based DOA estimators, we propose a new
DOA estimator that is based on the joint diagonalization of
a set of Toeplitz matrices. In this paper, we consider a
centro-symmetric uniform linear array (ULA) of N¼ 2Mþ1
sensors with half-wavelength interelement spacing. By
employing the fourth-order cumulant technique, the Gaus-
sian noise can be eliminated. Moreover, ð2Mþ1ÞðMþ1Þ
different cumulant matrices can be formed, allowing us to
handle the coherent signal issue. In particular, each row of
a cumulant matrix is used to construct a Toeplitz matrix to
decorrelate the coherent signals. Since these Toeplitz
matrices share the joint diagonalization structure, a new
cost function that does not need a priori information of
source number is devised. A new spatial spectrum is
then obtained where the DOAs are estimated via a one-
dimensional search.

The remainder of the paper is organized as follows. Section
2 describes the direction finding problem and introduces the
mathematical assumptions. The definition of the fourth-order
cumulant, calculation of the Toeplitz covariance matrix and
joint diagonalization based DOA estimation method are pre-
sented in Section 3. Simulation results are given in Section 4.
Finally, conclusions are drawn in Section 5.

Throughout this paper, we use boldface uppercase letters
to denote matrices, boldface lowercase letters for column
vectors, and lowercase letters for scalar quantities. Super-
scripts ð�ÞT , ð�Þn, ð�ÞH , ð�Þ�1 and ð�Þy represent transpose,
complex conjugate, conjugate transpose, inverse and
pseudo-inverse, respectively. The operator Efag is the
expected value of a, 0 is the zero matrix, IM is the M�M
identity matrix and JM is a M�M exchanging matrix with
its anti-diagonal being one and zero elsewhere. The C

denotes the set of complex numbers. Furthermore, J � J
represents the Euclidean norm of a vector.
2. Problem formulation

Consider a ULAwith N¼ 2Mþ1 isotropic sensors shown
in Fig. 1. There are P ðPrMþ1Þ narrowband source signals
impinging on the array from distinct directions {θ1;…;θP}
in the far field and the first K signals are mutually coherent
and the others are uncorrelated and independent of the
first K signals. Taking the first signal s1ðtÞ as reference, the
kth coherent signal becomes

skðtÞ ¼ βke
jδϕk s1ðtÞ; k¼ 2;…;K ð1Þ

where βk is the amplitude fading factor and δϕk is the
phase change. Since the values of δϕk will not affect the
coherence between the signals, without loss of generality,
we set δϕk ¼ 0; k¼ 2;…;K . Then the signals arriving at the
mth sensor at time t can be expressed as

xmðtÞ ¼ ∑
P

i ¼ 1
siðtÞe� j2πm sin ðθiÞΔ=λþnmðtÞ
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¼ s1ðtÞ ∑
K

i ¼ 1
βie

� j2πm sin ðθiÞΔ=λ

þ ∑
P

i ¼ Kþ1
siðtÞe� j2πm sin ðθiÞΔ=λþnmðtÞ ð2Þ

where si(t) is the complex envelope of the ith signal, β1 ¼ 1,
λ is the carrier wavelength, Δ¼ λ=2 is the interelement
spacing. In vector form, (2) becomes

xðtÞ ¼ ½x�MðtÞ;…; x0ðtÞ;…; xMðtÞ�T

¼AðθÞsðtÞþnðtÞ ð3Þ

where sðtÞ ¼ ½s1ðtÞ;…; sPðtÞ�T is the source signal vector and
A¼ ½aðθ1Þ;…; aðθPÞ� is the array manifold with

aðθpÞ ¼ ½ej2πM sin ðθpÞΔ=λ;…;1;…; e� j2πM sin ðθpÞΔ=λ�
being the pth steering vector. Here, nðtÞ is assumed to be
circularly symmetric zero-mean Gaussian with second-
order moments such that [19,20]

E½nðtÞ� ¼ 0 ð4Þ
and

E½nðt1ÞnHðt2Þ� ¼ δt1t2Rn ð5Þ

E½nðt1ÞnT ðt2Þ� ¼ 0 ð6Þ
where Rn is a N�N unknown positive definite Hermitian
matrix representing the spatial correlation of noise, and
δt1t2 is Kronecker delta function which is defined as

δt1t2 ¼
0; t1at2
1; t1 ¼ t2:

(
ð7Þ
3. Proposed algorithm

3.1. Fourth-order cumulant

Conventional array processing techniques utilize only
the second-order statistics of data samples. The second-
order statistics are sufficient provided that the signals are
Gaussian distribution [25]. However, in most communica-
tion systems, we often prefer to use non-Gaussian signals,
e.g., QAM and BPSK, for which the second-order statistics
cannot completely characterize their statistical properties.
Therefore, it is beneficial to consider the information
embedded in higher-order statistics. In this section, we
use the fourth-order cumulant matrix instead of the con-
ventional sample covariance matrix (SCM) to eliminate the
spatially colored Gaussian noise. The fourth-order cumu-
lant of zero-mean stationary signals is defined as [27]

cumðxk1 ðtÞ; xnk2 ðtÞ; xl1 ðtÞ; x
n

l2
ðtÞÞ

¼ Efxk1 ðtÞxnk2 ðtÞxl1 ðtÞx
n

l2
ðtÞg

�Efxk1 ðtÞxnk2 ðtÞgEfxl1 ðtÞx
n

l2
ðtÞg

�Efxk1 ðtÞxl1 ðtÞgEfxnk2 ðtÞx
n

l2
ðtÞg

�Efxk1 ðtÞxnl2 ðtÞgEfx
n

k2
ðtÞxl1 ðtÞg ð8Þ

where �Mrk1; k2; l1; l2rM.
Define a M�M cumulant matrix Ck1 ;k2 with its ðl1; l2Þ
entry being

Ck1 ;k2 ðl1; l2Þ ¼ cumðxk1 ðtÞ; xnk2 ðtÞ; xl1 ðtÞ; x
n

l2
ðtÞÞ: ð9Þ

Collecting (9) for �Mr l1; l2rM in matrix form, we obtain

Ck1 ;k2 ¼ cumðxk1 ðtÞ; xnk2 ðtÞ; xðtÞ; x
nðtÞÞ

¼ AðθÞΓk1 ;k2A
HðθÞ ð10Þ

where

Γk1 ;k2 ¼
Δ

γ4;s1al11a
n

l21

⋱
γ4;sP al1Pa

n

l2P

0
BB@

1
CCA: ð11Þ

Here, amn ¼ e� j2πm sin ðθnÞ=d is the mth element of the nth
steering vector and γ4;sp ¼ cumðspðtÞ; snpðtÞ; spðtÞ; snpðtÞÞ is the
fourth-order cumulant of the pth source.

Since �Mr l1; l2rM, it is observed from (9) that we
can construct ð2Mþ1Þ2 cumulant matrices in total. How-
ever, due to the fact that Ck1 ;k2 is a centro-Hermitian
matrix, we have

Ck1 ;k2 ¼ CH
k2 ;k1 ð12Þ

which means that Ck1 ;k2 and Ck2 ;k1 contain the same stat-
istical information, i.e., they share the same eigenvectors
and eigenvalues. Therefore, we do not need to compute all
the ð2Mþ1Þ2 cumulant matrices. Instead, we just need
ð2Mþ1ÞðMþ1Þ cumulant matrices that have different
statistics to be used for DOA estimation.

3.2. Decorrelated procedure

Note that Γk1 ;k2 has full rank when all the signals are
uncorrelated. However, when there exists highly corre-
lated or even coherent sources, Γk1 ;k2 becomes rank
deficient, which leads to performance degradation for
conventional subspace based techniques. To circumvent
this issue, a decorrelated procedure is required before DOA
estimation.

Proposition 1. Given a fourth-order cumulant matrix Ck1 ;k2 ,
its ðl1; l2Þ entry can be expressed as

Ck1 ;k2 ðl1; l2Þ ¼ ∑
P

n ¼ 1
ϕk1 ;k2 ;l1 ðnÞ � ej2πl2 sin ðθnÞ=d: ð13Þ

where

ϕk1 ;k2 ;l1 ðnÞ ¼
βn

nγ4;s1 ∑
K

p ¼ 1
∑
K

q ¼ 1
∑
K

m ¼ 1
ak1pa

n

k2q
al1mβpβ

n

qβm; n¼ 1;…;K

γ4;sn � jβnj4ak1nan

k2n
al1n; n¼ Kþ1;…; P

8>><
>>:

Proof. The proof is provided in Appendix A.

Given a cumulant matrix Ck1 ;k2 , similar to [28,31], by
choosing its mth row, we can construct the following
Toeplitz matrix:

~Ck1 ;k2 ;m ¼

ck1 ;k2 ðm;0Þ ck1 ;k2 ðm;1Þ ⋯ ck1 ;k2 ðm;MÞ
ck1 ;k2 ðm; �1Þ ck1 ;k2 ðm;0Þ ⋯ ck1 ;k2 ðm;M�1Þ

⋮ ⋮ ⋱ ⋮
ck1 ;k2 ðm; �MÞ ck1 ;k2 ðm; �Mþ1Þ ⋯ ck1 ;k2 ðm;0Þ

2
66664

3
77775

¼ ~A ~Φk1 ;k2 ;m
~A
H
ACðMþ1Þ�ðMþ1Þ ð14Þ
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where

~A ¼ ½ ~aðθ1Þ;…; ~aðθPÞ� ð15Þ

~Φk1 ;k2 ;m ¼
ϕk1 ;k2 ;mð1Þ

⋱
ϕk1 ;k2 ;mðPÞ

2
64

3
75 ð16Þ

with

~aðθpÞ ¼ ½1; e� j2π sin ðθpÞΔ=λ;⋯; e� j2πM sin ðθpÞΔ=λ�T ; p¼ 1;…; P:

ð17Þ
It is observed from (14) that ~A is a Vandermonde matrix
and the vectors f ~aðθ1Þ;…; ~aðθPÞg are linearly independent.
Therefore, ~A is full column rank. Meanwhile, from Pro-
position 1 we find that ϕk1 ;k2 ;mðpÞa0 for p¼ 1;…; P. Thus,
~Φk1 ;k2 ;m is a full rank diagonal matrix regardless of the
coherence of sources.

Remark 1. Notice that any row of the fourth-order cumu-
lant matrix can be used to form a Toeplitz matrix ~Cm. In
[28], an ESPRIT-like algorithm has been devised to utilize
the SCM to form Rm, and then the ESPRIT algorithm is
employed for DOA estimation. However, it has three main
demerits: (i) Every time it only uses one Toeplitz matrix to
estimate the DOAs, which means that only partial infor-
mation of the SCM is utilized. Hence, the estimation
accuracy may not be guaranteed; (ii) Under white Gaus-
sian noise scenario, when we form the SCM based Toeplitz
matrix, the uniformly distributed noise variance will also
be involved in the off-diagonal elements of the Toeplitz
matrix. In other words, the white Gaussian noise will be
changed to colored noise; (iii) It is assumed in [4–9,28]
and [26] that the source number is known a priori.
However, accurate source number detection remains a
challenge. To overcome these drawbacks, we propose a
new DOA estimation algorithm that exploits the full
information of the ð2Mþ1ÞðMþ1Þ fourth-order cumulant
matrices, which can work properly even when the source
number is not available.

3.3. DOA estimation

For notation simplicity, let ~Cm be ~Ck1 ;k2 ;m and ϕm;i be
ϕk1 ;k2 ;mðiÞ. Then ~Cm can be written as

~Cm ¼ ~A ~Φm
~A
H ¼ ∑

P

i ¼ 1
ϕm;i ~aðθiÞ ~aHðθiÞ: ð18Þ

It is obvious that (18) has the joint diagonalization struc-
ture and spans the same range space of ~A , i.e.,

spanf ~Cmg ¼ spanf ~Ag: ð19Þ
By exploiting the fact that the �m and m rows of Ck1 ;k2
are conjugate symmetric, given by Ck1 ;k2 ð�m; : Þ ¼ Cn

k1 ;k2
ðm; : ÞJMþ1. As a result, Ck1 ;k2 ð�m; : Þ and Ck1 ;k2 ðm; : Þ have
the same statistical information and there is no need to
employ all the ð2Mþ1Þ rows to form Toeplitz matrices.
Instead, we can choose the first ðMþ1Þ rows of Ck1 ;k2 , and
in the sequel there are only ðMþ1Þ Toeplitz matrices
containing different statistics. Recalling that ~Φm has full
rank, we can utilize these ðMþ1Þ Toeplitz matrices to
identify the range space of the array manifold matrix ~A
and estimate the DOA parameters. For the pth source,
there always exists a vector bpACMþ1 that is orthogonal to
the range space spanned by the remaining ðP�1Þ steering
vectors except ~aðθPÞ. Hence, we have

bp ? rangef ~aðθ1Þ;…; ~aðθp�1Þ; ~aðθpþ1Þ;…; ~aðθPÞg: ð20Þ
Equivalently, we obtain

~aHðθiÞbp ¼
~aHðθiÞbp; i¼ p

0; iap:

(
ð21Þ

Substituting (21) into (18) yields

~Cmbp ¼ ∑
P

i ¼ 1
ϕm;i ~aðθiÞ ~aHðθiÞbp ¼ gm ~aðθpÞ ð22Þ

where gm ¼ϕm;p ~aHðθpÞbp. From (22), we confirm that if θ
is one of the true DOAs, there always exists a scalar gm that
makes ~Cmb and ~aðθÞ parallel, i.e.,
~Cmb¼ gm ~aðθÞ; �Mrmr0: ð23Þ
Since (23) holds true for �Mrmr0, we try to minimize
the total distance between the ðMþ1Þ equations in (23).
This leads to the following optimization problem for
finding the azimuth θ [24,31]

min
θ

Jðθ;g;bÞ ¼ ∑
0

m ¼ �M
‖ ~Cmb�gm ~aðθÞ‖2

s:t: JgJ ¼ 1 ð24Þ
where ~aðθÞ is the steering vector characterized by the
parameter of interest θ, b is a ðMþ1Þ � 1 vector and
g¼ ½g�M ;…; g0�. For a given θ, both b and g are functions
of θ. Note that the constraint JgJ ¼ 1 is used to avoid the
trivial solution of (24), i.e., g¼ b¼ 0.

Since b and gm are unknown parameters, it is difficult
to solve (24) by searching the DOAs directly. To circumvent
this issue, we simplify (24) such that the optimization does
not depend on b and gm. To this end, we follow [24] to
expand the cost function (24) as

Jðθ;g;bÞ ¼ bH ∑
0

m ¼ �M

~C
H
m
~Cm

� �
b

�bH ∑
0

m ¼ �M
gm ~C

H
m ~aðθÞ

� �

� ∑
0

m ¼ �M
gn

m ~aHðθÞ ~Cm

� �
b

þ ~aHðθÞ ~aðθÞ ∑
0

m ¼ �M
jgmj2: ð25Þ

Let

F¼ ∑
0

m ¼ �M

~C
H
m
~CmACðMþ1Þ�ðMþ1Þ ð26Þ

GðθÞ ¼ ½ ~CH
�M ~aðθÞ;…; ~C

H
0 ~aðθÞ�ACðMþ1Þ�ðMþ1Þ: ð27Þ

Recalling that ~aHðθÞ ~aðθÞ ¼Mþ1 and ‖g‖2 ¼∑0
m ¼ �Mjgmj2,

(25) can be rewritten as

Jðθ;g;bÞ ¼ bHFb�bHGðθÞg�gHGHðθÞbþðMþ1Þ‖g‖2: ð28Þ
By using the method of Lagrange multiplier, we have

Lðθ;g;bÞ ¼ Jðθ;g;bÞþϱ � ð‖g‖2�1Þ: ð29Þ



Table 1
Pseudo-code of proposed algorithm.

Step 1: Use (9) to calculate (2Mþ1)(Mþ1) fourth-order cumulant matrices of x(t), i.e., Ci;j ; �Mr ir jrM.

Step 2: For each cumulant matrix, choose its first (Mþ1) rows and each row is utilized to form (Mþ1) Toeplitz matrices in (18), i.e., f ~Cg0m ¼ �M .
Step 3: Use (26) and (27) to construct the matrices F and GðθÞ, respectively.
Step 4: Utilize (40) to form the pseudo-spectrum PðθÞ.
Step 5: Estimate the DOAs by searching for the peaks of PðθÞ.
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For fixed θ and g, similar to [24] and [31] taking the first-
order gradient with respect to b yields

∂Lðθ;g;bÞ
∂b

¼ ∂Jðθ;g;bÞ
∂b

¼ 2 Fb�G θ
� �

g
� �¼ 0 ð30Þ

which leads to

bopt ¼ F†GðθÞg: ð31Þ

Substituting (31) into (28), the optimization problem is
reduced to

min
θ

Jðθ;gÞ ¼Mþ1�gHGHðθÞF†GðθÞg: ð32Þ

Minimizing (32) equals to maximizing gHGHðθÞF†GðθÞg. Let
∑Mþ1

i ¼ 1 λiuiuH
i be the eigenvalue decomposition of

GHðθÞF†GðθÞ with λ1Z⋯ZλMþ1 being the eigenvalues
and fu1;…;uMþ1g being the corresponding eigenvectors.
Let g be a linear combination of the eigenvectors of

GHðθÞF†GðθÞ, i.e.,
g¼ ν1u1þ⋯þνTuT ð33Þ

where TrMþ1. Substituting (33) into gHGHðθÞF†GðθÞg
yields

gHGHðθÞF†GðθÞg¼ gH ∑
Mþ1

i ¼ 1
λiuiuH

i g

¼ ν21λ1þ⋯þν2TλT : ð34Þ

Since λ1 is the maximum eigenvalue of GHðθÞF†GðθÞ, (34)
can be rewritten as

gHGHðθÞF†GðθÞgr ðν21þ⋯þν2T Þλ1: ð35Þ

It follows ‖g‖2 ¼ 1 that

ν21þ⋯þν2T ¼ 1: ð36Þ

Substituting (36) into (35), the maximum of

gHGHðθÞF†GðθÞg becomes

max
θ

gHGHðθÞF†GðθÞg¼ λ1 ð37Þ

where the equation holds true if and only if g¼ u1.
Therefore, (32) can be further simplified as

min
θ

JðθÞ ¼Mþ1�max eigfGHðθÞF†GðθÞg ð38Þ

where max eigð�Þ represents the maximum eigenvalue of a
matrix.

There are total ð2Mþ1ÞðMþ1Þ cumulant matrices con-
taining different statistical information and each cumulant
matrix can form ðMþ1Þ Toeplitz matrices. Note that all the
Toeplitz matrices have the same diagonalization structure.
Hence, the cost function can be rewritten as

min
θ

JðθÞ ¼ ∑
ð2Mþ1ÞðMþ1Þ

i ¼ 1
Mþ1�max eigfGHðθÞF†GðθÞg:

ð39Þ
Therefore, the pseudo output power spectrum for coherent
signals becomes

P θ
� �¼ 1

ð2Mþ1ÞðMþ1Þ2�∑ð2Mþ1ÞðMþ1Þ
i ¼ 1 max eigfGHðθÞF†GðθÞg

: ð40Þ

The complete procedure of the proposed method is sum-
marized in Table 1.

Remark 2. Recalling that the number of rows of ~Cm in
(14), namely, ðMþ1Þ, must be larger than or equal to P.
Unlike the forward only spatial smoothing (FOSS) [16],
forward-backward spatial smoothing (FBSS) [18] and
ESPRIT-like [28] algorithms, our solution does not depend
on the source number. Therefore, it is much more attrac-
tive for practical applications. Due to this advantage, the
proposed algorithm is able to resolve up to ðMþ1Þ sources
with ð2Mþ1Þ sensors. However, the ESPRIT-like algorithm
can only handle at most M sources.

Remark 3. Note that in Section 3.3, the idea has been used
in [24,29–31]. The methods in [24,29,30] are designed only
for uncorrelated signals. Although the approach in [31] is able
to deal with coherent signals, its performance will degrade in
spatially correlated noise scenario since it is designed under
white Gaussian noise assumption. Unlike the conventional
subspace based methods [26–28], the proposed method does
not need the knowledge of source number. In particular, it
follows from (40) that the source number and the DOAs are
selected as the number of highest local maxima of PðθÞ and
the corresponding angles, respectively.

4. Simulation results

In this section, we examine the behavior of the pro-
posed technique. We consider a ULA of N¼5 omnidirec-
tional sensors with half-wavelength spacing. The SNR is
defined as the ratio of the power of all source signals to
that of the additive noise at each sensor. In the following
examples, we assume that the sources are 4QAM signals
and noise is spatially correlated Gaussian distributed. The
(k,l) element of the noise covariance matrix is given by

Rnðk; lÞ ¼ σ2
nγ

jk� ljejπðk� lÞ=2 ð41Þ
where the power level σn

2
is adjusted to give the desired SNR

and γ is a regression coefficient which is used to adjust the
spatial correlation between noise. Here, a larger γ corresponds
a larger correlation and γ¼0means the noise is white Gaussian
process. Note that this noise model has been used in [19,20].
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In the first example, we consider three sources with
one coming from θ1 ¼ 211 and a group of two coherent
sources coming from θ2 ¼ �301 and θ3 ¼ �101. The num-
ber of snapshots is L¼500 and the SNR is set to be 8 dB.
We consider two cases: γ¼0.7 and γ¼0, i.e., spatially
correlated Gaussian noise and white Gaussian noise. The
performances of the proposed and FBSS algorithms are
compared. Meanwhile, we also introduce a fourth-order
cumulant (FOC) based method [24] that does not need the
source number information for comparison. For the FBSS
method, the subarray size is 4. Fig. 2(a) displays the
normalized spatial spectra, where the normalization is
performed by subtracting the smallest value of output
power and then dividing the maximum value of the
spectrum. The true DOAs are plotted with black dash lines.
We can see from the curves that the proposed algorithm
correctly resolves all the sources under the spatially
correlated noise scenario. However, the FOC method has
only one successful peak of θ1 but fails to resolve the other
two coherent signals. This is because the FOC scheme is
Fig. 2. N¼5, L¼500, SNR¼ 8 dB, one source from 211 and a group of
coherent sources from �301 and �101. (a) Colored noise with γ¼0.7 and
(b) white noise with γ¼0.
not able to deal with coherent signals. Although the FBSS
method succeeds to generate three visible peaks, there is a
large deviation between the estimated and true DOAs. This
deviation is mainly caused by the spatially correlated
Gaussian noise. Fig. 2(b) is plotted under white Gaussian
noise case. It is seen that the FBSS method has a smaller
bias compared to Fig. 2(a) and it achieves the best angle
resolution. The proposed method also resolves the three
DOAs correctly, whereas the FOC method only has two
peaks and it fails to estimate the two coherent DOAs.

In the second test, we compare the proposed method
with the FBSS, ESPRIT-like [28], FOC and EVESPA [26]
algorithms in terms of root mean square error (RMSE). We
assume that for the FBSS, ESPRIT-like and EVESPA algo-
rithms, the number of sources is known. We consider three
sources with one coming from θ1 ¼ 201 and a group of two
coherent sources coming from θ2 ¼ �421 and θ3 ¼ �151.
The number of snapshots is L¼800. We now consider a more
severe noise scenario, where a larger γ is used, i.e., γ¼0.9.
We set σ2

n ¼ 1 and vary the signal power such that the input
SNR increases from �5 dB to 30 dB. For the FBSS method,
the subarray size is 4. 1000 Monte Carlo simulations have
been carried out to evaluate the RMSE, which is defined as

RMSE¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1
1000P

∑
P

i ¼ 1
∑
1000

j ¼ 1
ðθ̂ i;j�θiÞ2

s
: ð42Þ

It is observed from Fig. 3(a) that the proposed method
achieves the best estimation performance at low SNRs. The
ESPRIT-like and FOC algorithms cannot work properly under
the spatially correlated noise and coherent signal case. The
EVESPA outperforms the FBSS method but it fails to achieve a
performance improvement as the SNR increases. We observe
that the proposed estimator outperforms the FBSS method
when SNRo15 dB while the opposite occurs in high SNR
region. This is because the aperture of the FBSS is larger than
that of the proposed scheme. Moreover, at high SNRs, the
spatially correlated noise has little perturbation and larger
effective aperture is more important. When SNR is larger
than 20 dB, the FBSS method outperforms the proposed one
and achieves the best performance. Fig. 3(b) shows the
empirical probability of resolution versus SNR. Here, the
probability of resolution is calculated by introducing a binary
hypothesis. Let Θ¼ ½θ1�δ;θ1þδ� [ ⋯ [ ½θP�δ;θPþδ� be
the hypothesis, where δ is the RMSE corresponding to the
threshold SNR and ½θp�δ;θpþδ� is the pth DOA sector. If all
the DOA estimates are successfully localized in their own
sectors, we say all the DOAs are successfully estimated. For
example, after 1000 independent tests, assuming that there
are Ns times that all the DOAs are successfully estimated, the
probability of resolution is calculated as Ns=1000. In this
example, δ is selected to be 0.71. It is seen that the proposed
scheme has the largest probability of resolution. The pro-
posed and FBSS methods have a full probability of resolution
when SNR415 dB. However, the EVESPA fails to attain the
probability of one. Moreover, it follows from Fig. 3(a) that its
RMSE does not decrease as SNR becomes larger.

Let us now study the RMSE performance as a function
of sample size. We fix the SNR at 10 dB and vary the
number of snapshots from 100 to 1000. The other



Fig. 3. RMSE performance versus SNR. (N¼5, L¼800, γ¼0.9, one source
from 201 and a group of coherent sources from �421 and �151.)
(a) RMSE versus SNR and (b) probability of resolution versus SNR.

Fig. 4. RMSE performance versus sample size. (N¼5, SNR¼10 dB, γ¼0.9,
one source from 201 and a group of coherent sources from �421
and �151). (a) RMSE versus L and (b) probability of resolution versus L.
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parameters are the same as the second experiment. Fig. 4
(a) shows the RMSEs. We also plot the probability of
resolution in Fig. 4(b). It is seen from Fig. 4(a) that the
proposed scheme achieves the best performance, followed
by the EVESPA. However, the ESPRIT-like method still
performs the worst because it uses only a small part of
information contained in the covariance matrix and fails to
eliminate the impact of the severe noise. For the FOC
scheme, it is robust to the spatially correlated noise, but it
still performs poorly due to the fact that it cannot deal
with coherent signals.

Next, we consider a case when there are three sources
from θ1 ¼ �101, θ2 ¼ 81 and θ3 ¼ 351, whereas SNR and
the number of snapshots are fixed at 12 dB and L¼800.
Note that the first source is uncorrelated with the other
two sources. In Fig. 5(a), the RMSEs of the estimated DOAs
are plotted as a function of the correlation coefficient ρ
between the second and the third sources. Here, the
correlated source samples are generated from a first-
order autoregressive process:

s3ðiÞ ¼ ρs2ðiÞþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1�jρj2

q
� eðiÞ; i¼ 1;…;N: ð43Þ
It can be seen that the performances of the proposed and
FBSS methods are independent of the correlation between
the two sources, whereas the performance of the FOC
method deteriorates as ρ increases. Compared to the other
four estimators, the proposed scheme achieves a consider-
able improvement in accuracy, no matter the signals are
correlated or uncorrelated. Fig. 5(b) shows the probability
of resolution as a function of correlation coefficient. It is
seen that when the signals are uncorrelated or partially
correlated, the proposed and FBSS methods can resolve all
the DOAs. However, when the signals are highly correlated
or even coherent, the FBSS fails to resolve almost 50%
DOAs, whereas the proposed approach can still have a
resolution probability of 100%.

5. Conclusion

A novel direction finding algorithm based on the joint
diagonalization structure of a set of Toeplitz matrices
is devised for coherent signals in the presence of spatially
correlated noise. The decorrelation of coherent signals
is realized via matrix Toeplitz method. By using the



Fig. 5. RMSE performance versus correlation coefficient. (N¼5, SNR¼
10 dB, γ¼0.9, one source from �101 and a group of correlated sources from
81 and 351. (a) RMSE versus ρ and (b) probability of resolution versus ρ.
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fourth-order cumulant technique, the proposed algorithm
can construct ð2Mþ1ÞðMþ1Þ2 Toeplitz matrices provided
that a ULA of ð2Mþ1Þ elements is adopted. The most
favorable advantage of the proposed scheme is that it does
not require to know the number of sources. Such an
advantage is highly desirable for practical applications
since accurate detection of source number is still a
challenging problem. Simulation results demonstrate the
effectiveness of the proposed algorithm.

Appendix A. Proof of Proposition 1

Before proving, let us introduce some properties of
cumulant that are used in the following derivation [25]:
CP1:
 If fαigni ¼ 1 are constants and fxigni ¼ 1 are random
variables, then

cumðα1x1;…;αnxnÞ ¼ ∏
n

i ¼ 1
α1

 !
cumðx1;…; xnÞ: ðA:1Þ
CP2:
 Cumulant is additive

cumðx1þy1; x2;…; xnÞ
¼ cumðx1;…; xnÞþcumðy1;…; ynÞ: ðA:2Þ
CP3:
 If the random variables fxigni ¼ 1 are independent of
the random variables fyigni ¼ 1, then

cumðx1þy1;…; xnþynÞ
¼ cumðx1;…; xnÞþcumðy1;…; ynÞ: ðA:3Þ
The derivation starts with the estimation of a ðN � NÞ
fourth-order cumulant matrix Ck1 ;k2 ðl1; l2Þ with the (k,l)

element being

Ck1 ;k2 ðl1; l2Þ ¼ cumðxk1 ; xnk2 ; xl1 ; x
n

l2
Þ

¼ cum ∑
P

p ¼ 1
ak1pspðtÞ; ∑

P

q ¼ 1
an

k2q
snqðtÞ;

 

∑
P

m ¼ 1
al1msmðtÞ; ∑

P

n ¼ 1
an

l2n
snnðtÞ

�
þcumðnk1 ðtÞ;nn

k2
ðtÞ;nl1 ðtÞ;nn

l2
ðtÞÞ

¼ cum s1ðtÞ ∑
K

p ¼ 1
ak1pβpþ ∑

P

p ¼ Kþ1
ak1pspðtÞ;

 

sn1ðtÞ ∑
K

q ¼ 1
an

k2q
βn

qþ ∑
P

q ¼ Kþ1
an

k2q
snqðtÞ;

s1ðtÞ ∑
K

m ¼ 1
al1mβmþ ∑

P

m ¼ Kþ1
al1msmðtÞ;

sn1ðtÞ ∑
K

n ¼ 1
an

l2n
βn

nþ ∑
P

n ¼ Kþ1
an

l2n
snnðtÞ

!

¼ cum s1ðtÞ ∑
K

p ¼ 1
ak1pβp; s

n

1ðtÞ ∑
K

q ¼ 1
an

k2q
βn

q;

 

s1ðtÞ ∑
K

m ¼ 1
al1mβm; s

n

1ðtÞ ∑
K

n ¼ 1
an

l2n
βn

n

�

þcum ∑
P

p ¼ Kþ1
ak1pspðtÞ; ∑

P

q ¼ Kþ1
an

k2q
snqðtÞ;

 

∑
P

m ¼ Kþ1
al1msmðtÞ; ∑

P

n ¼ Kþ1
an

l2n
snnðtÞ

!

¼ ∑
K

p ¼ 1
∑
K

q ¼ 1
∑
K

m ¼ 1
∑
K

n ¼ 1
cum s1ðtÞ; sn1ðtÞ; s1ðtÞ; sn1ðtÞ

� �
� ak1pan

k2q
al1ma

n

l2n
βpβ

n

qβmβ
n

n

þ ∑
P

p ¼ Kþ1
∑
P

q ¼ Kþ1
∑
P

m ¼ Kþ1
∑
P

n ¼ Kþ1

cumðspðtÞ; snqðtÞ; smðtÞ; snnðtÞÞ
�ak1pan

k2q
al1ma

n

l2n
βpβ

n

qβmβ
n

n

¼ ∑
K

n ¼ 1
βn

nγ4;s1 ∑
K

p ¼ 1
∑
K

q ¼ 1
∑
K

m ¼ 1
ak1pa

n

k2q
al1m � βpβ

n

qβm

 !
an

l2n

þ ∑
P

n ¼ Kþ1
ðγ4;sn � jβnj4ak1nan

k2n
al1nÞan

l2n
:

Define the following intermediate variable

n
K K K

n n

8>>

ϕk1 ;k2 ;l1 ðnÞ ¼

βnγ4;s1 ∑
p ¼ 1

∑
q ¼ 1

∑
m ¼ 1

ak1pak2qal1mβpβqβm; n¼ 1;…;K

γ4;sn � jβnj4ak1nan

k2n
al1n; n¼ Kþ1;…; P

<
>>:

Then, for �Mr l1; l2rM, we have

Ck1 ;k2 ðl1; l2Þ ¼ ∑
P

n ¼ 1
an

l2n
ϕk1 ;k2 ;l1 ðnÞ
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¼ ∑
P

n ¼ 1
ϕk1 ;k2 ;l1 ðnÞ � ej2πl2 sinθn=d: ðA:5Þ

This completes the proof of Proposition 1. □
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